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1 Introduction first apply continuation to find the expected number of solutions

For manv mechanical svstems. the set of possible confi urarld use that information to decide if the problem is within range
Y Y ' p Ul alimination techniques. Elimination algorithms tend to be faster

tions that the links may assume can be described by a System gl o have acceptable accuracy when the number of roots is
polynomial equations. In particular, this is true for any mEChanismoderate but continuation tends to be faster and more accurate
consisting of rigid bodies joined by any of the lower-order pair%/vhen the,number of roots is larger. Some publicly available soft-
excepting general helical joints. Thus, prismatic, rotary, cylindr(/-vare for polynomial continuation is availabj&l,12.
cal, spherical and planar joints are all allowed. Moreover, many \y jay pe that a problem does not have isolated roots, but rather
higher-order contact joints are also described by polynomial equasyg higher-dimensional solutions. In fact, in general, the solutions
tions, for example, point-on-plane and line-on-plane contact. Wig 5 polynomial system may consist of components of several
consider both the problem of determining the possible motions gferent” dimensions. Simple examples can be constructed as
such mechanisms and the problem of finding the parameters Ofﬁldeucts of polynomials, for example, f{x,y) = (x+y—1)(x2
mechanism such that it meets prescribed precision points. In he) and g(X,y):(X+y; D(x—y), then the solutions of the
latter case, our methods are applicable whenever the govern'gggtem{fzoygzo} consist of the linex+y—1=0 and the two
equations are polynomial in the unknown design parameters. oints ,y)= = (1,1). It is not necessary that the polynomials be
In the last decade, polynomial continuation developed into factorizable for these phenomena to arise; in fact, examples of this
convenient, reliable tool for solving problems in kinematics. Itis §om kinematics will be presented herein. One, a moveable seven-
numerical process that finds all isolated roots of a polynomigly |inkage, has both a solution curve and six isolated solutions,
system (*Isolated” means there are no other roots in the vicinityand another, a moveable Stewart-Gough platform, has several so-
that is, the solution point does not belong to a higher-dimensiongtion curves. In both cases, the existence of the solution curves
solution set, such as a curve or surfacgtarting at the known depends on the parameters of the linkage having certain special
roots of a suitable start system, the method tracks the solutigflationships; general linkages of these types have only isolated
paths as the start system is continuously transformed into the t@gtutions.
get system. When the start system and the transformation proceRecently, we developed a method for solving these more gen-
dure, called a homotopy, are chosen suitably, the endpoints eptl cases by polynomial continuatih3], making essential use
these solution paths are guaranteed to include all isolated sabfi-the method described i14]. Improvements to the technique
tions of the target system. The numerical approach of continuatinave been described [i5,16,17. These are all part of a program
seems to have been first applied to kinematicgli2], as a heu- of work outlined in[18], which coined the term “Numerical Al-
ristic, and later by{3] in a modern form with solid mathematical gebraic Geometry” and laid down the basic concepts therein. The
underpinnings. The modern approach, making essential useatgorithm whose use is described in this paper is an extension to
complex numbers to avoid singularities or other degeneracies[12]; executable code for the experimental algorithms is available
presented for engineers and kinematicianglib], where one may at the second author’s website and the software is described in
find references on the development of the metl{See alsd6].) more detail in[19].
It has proven to be a powerful approach to solving kinematical
problems, as exemplified Hy,8,9,10. The early determinations
that the general six-revolute, single-loop spatial mechanism has
16 solutions[3] and the general Stewart-Gough platform has 46 Three Example Problems
solutions[7] helped guide the subsequent development of alge-In this section, we introduce three example problems: a planar
braic elimination procedures for both problems. When consideriggven-bar structure, a movable Stewart-Gough platform and a
a new kinematics problem, Raghavan and R@éjfrecommend to problem in spatial body guidance. The solutions to these will be
discussed later, after a brief outline of our methods.

Contributed by the Mechanisms and Robotics Committee for publication in the .
JOURNAL OF MECHANICAL DESIGN. Manuscript received July 2002; revised Feb- 2.1 A Seven-Bar Structure. This problem tests a known

ruary 2003. Associate Editor: C. Mavroidis. result from the kinematics of planar linkages. Suppose we are
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Py
Fig. 2 Griffis-Duffy platform. Both base and endplate are equi-
lateral triangles.

i) mean that the links have real rotation angles, so these corre-
spond to actual solutions of the geometric problem.

For generic parameters, this problem has 18 distinct solutions in
complex space, sef21] for a demonstration using a different
formulation. For the particular set of pieces shown in Fig. 1, eight
of these are “real” solutions havin,|=1.

For certain special linkages, higher-dimensional solution sets
Fig. 1 Top: Find all possible assemblies of these pieces into a can occur. One such example can be constructed by making the
7-bar mechanism. Bottom: One such assemb|y_ two four-bar I|nkages ABFEG and CDIHG to be Roberts COog-

nates,([22], p. 340, so that the solution set must include a four-
bar coupler curve, having degree six. Our objective will be to
confirm that the known curve is discovered by the algorithm and
given a collection of seven rigid planar pieces: one quadrilater@dditionally to see if any other solutions exist.
two triangles, and four line segments with vertices labeled asp 2 gpecial Stewart-Gough Platforms. A generic Stewart-
shown at the top of Fig. 1. . Gough platform consists of two rigid bodies, called the base and

We wish to assemble the pieces so as to algwith A", B the endplate, joined by six legs. The legs are connected to the base
with B, etc. It is not permitted to flip the pieces over, but theyind endplate by spherical joints. As a robot-manipulator, the
can be translated and rotated in any fashion within the plane. Qaagths of the legs are controlled by actuators to move the end-
such assembly is shown at the bottom of Fig. 1. The problem isiate with six degrees of freedom, but when the leg lengths are
find all possible assemblies. It is simplest to hold one of the linkgeld constant, the platform is in most cases a rigid structure. How-
say the quadrilateral, in a fixed location and determine the locever, for certain arrangements of the joints and certain leg lengths,
tions of the remaining links. the structure may lose rigidity and become mobile. For a robot-

Using the formulation in20] for problems of this type, the manipulator, this is generally undesirable and possibly dangerous.
problem can be written as a system of polynomial equations: On the other hand, the same arrangement might be useful as a

N ) mechanism, having one or more degrees of freedom.
66,=1, j=1,....6 @) When the six ball joints in the base and the six ball joints in the
endplate are in general position, a Stewart-Gough platform has
forty isolated solutions. This was first established nearly simulta-
neously by continuatiofi7], by computer algebrf23,24], and by

D

7a0+ a101+ a2027a303:0

—bo+ by 0,+as0s—a,0,+asfs=0 (2) proof using algebraic geometi25]. Simpler analytical proofs
came latef26,27]. One formulation of the kinematic equations is
—Cotayts+bs05—aghs=0 as follows, where &,9 € P’ are Study coordinates for rigid body

motion[27]. Here,P” means seven-dimensional projective space,
. which means thate,g are a set of eight coordinates whose scale
—aptagf;taf,—azf;=0 does not mattexTwo sets(e,g that differ only by a nonzero scale
factor represent the same rigid-body displacemdrite first four
coordinatesg, are a quaternion that represents orientation and the
e A DB A D=0 last four coordinatesg, encode position. Considered as four-

07 G4Pat H5Y5 C6V6 vectors,e andg must be orthogonal to represent a valid rigid-body
The parametersy,bg,cq,a;1,a,,b5,a85,a4,a5,b5,a5 are com- displacement. This condition is the first equation in the following
plex numbers that describe the shape of the links. In B)sa;, system, whereas the other six equations express the constraint
b;, andc; denote the complex conjugate af, b;, andc;. One imposed by the six given leg lengths:
may notice that the coefficients in Eg8) are the conjugates of
those in Eqs(2). The complex variabl®, = e’ % represents the
rotation of linki through angleg; . Solutions havind 6;|=1 (all Loe'Te—g'g=0 (4)

—bo+by0,+ @305~ a0, +8505=0 (3)

e'g=0
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e'Ae—€eBjg=0, i=1,...,5 Table 1 Analogy between solutions of univariate polynomials
and system of polynomials

Univariate System
Herel is the length of one of the legs, and th 4 matricesA; 1 equation in 1 variable n equations inN variables
and B; depend on the ball joint positions and leg lengths as de- Solution points Solution points, curves, surfaces, etc.
tailed in[27]. Double roots, triple roots, etc. Sets with multiplicity
One special kind of Stewart-Gough platform, shown in Fig. 2, Facmr'zat'onni(z_ﬁgrﬁerical Remggﬁg{%ﬁ decomposition
is called a Griffis-Duffy platform[28,29. In this platform, the Solution points Witness sets

base and endplate are triangles, with ball joints at each vertex and

along each side. The legs connect a side point of one body to a

vertex of the other, correspondences proceeding in order around

the respective triangles. That is, labelling the joint$gs. . . ,P5

clockwise around the base triangle and the corresponding jointspsiint of the body and leR; e S0(3)C R**? be the rotation matrix

h I ' Pl ledi to P/ ider- for the body’s orientation. Equations for the system can be written
itng Itze)r,lippa}te akg, PS5, legi connectsP; to P/, ;, consider as, fori=1.....5, sed5].
67— " 0"
~ We consider two special Griffis-Duffy platforms, first identified yT(Ri—Ro)x+yT(pi—po) — (PI R — poRo) X
in [29]. In the first specialization, the base and endplate triangles T -
are equilateral and the ball joints on the sides are at the midpoints. — (P Pi— PoP0)/2=0. (5)

Figure 2 is of thi; type. Note that the endplate and base are simillarlt may be seen from the bilinear structure of this system that
but may have different scales. The second case, a further specigking the solution curve by adding a single linear equation in
ization of the first one, is to make the base and endplates congri-y) i yield at most 20 solutions, while slicing it with a linear
ent and to make all six leg lengths equal. For convenience, let Uigjation in jusk or y alone will yield at most 10 solutions. These
call these two special cases the Griffis-Duffy | and Griffis-Duffy lks1ow from the two-homogeneous Bezout numbers for the sys-

platforms. tem, obtained by finding the coefficient of in
Griffis-Duffy | platforms are members of a class of Stewarty;s ' y g b

. . IIP-,(deg(fi) e+ deg(f;) 8), where deg(f;) is the degree ok
Gough platforms that are calledchitecturally singular For gen- . equationf, , and similarly for deg(f;). For the slice in &,y),

) i

eral leg lengths, these platforms have no solutions: they cannot, pe - 3.3 6 : . d

assembled. However, if one specifies a general position of t coefﬂ_cn_ent otx"f n (atp)is 2.0‘ and for a slice only I,
P g P g coefficient ofa®s* in a(a+B)° is 10. (See[31] for multi-

endplate with respect to the base and sets the leg lengths to mahorhogeneous Bezout formulas, and 528, p.133 for an alter-

then the platform has one-degree-of-freedom of motior{.28j, . X L
the motion of Griffis-Duffy | and Il platforms are analyzed. wehative deduction of these degreeBhese represent limits on the

treated both these cases numerically, expecting only to confirm gdree and bi-degree of the curve, but do not tell us the exact

results in[28]. However, we found instead several surprises th grees or whether the curve is irreducible. Our methods will
we explain in §4 below. etermine these questions.

2.3 A Spatial Body-Guidance Problem. Our final example .
problem concerns the synthesis of a mechanism to guide a rigid Outline of the Method
body through six spatial positions. The spatial problem may beGiven a system ofm polynomial equations im variables,
regarded as a generalization of the classical planar Burmestex):C"—C™, how can we determine the dimensions of its solu-
problem: given five placements of a moving body in the plangion components and how can we represent those solutions nu-
find the points of the moving body that lie on a common circlgnerically? First, we must define what we mean by “components.”
fixed in the plane. These points are called “circle points,” and thRotice that, even though in kinematics we are generally interested
centers of the fixed circles are called “center points.” There are gnly in real solutions, at this point we are considering the equa-
general four centerpoint/circle-point pairs. If we specify only foufions over the complexes. This simplifies the problem consider-
placements instead of five, we get a center-point curve andably; we will investigate the computation of real components in
circle-point curve, each of which are cub22]. These curves are the future.
useful for designing a four-bar linkage to carry the body through |t is well-known from algebraic geometry, that the solution set
the specified locations: a so-called body-guidance design problefn be broken up intireducible componentsThese are the natu-

A related problem, due to Schifies, considers a body moving ral pieces into which one would divide up the set: individual
in space rather than in the plane, and asks for points of the baglyints, curves, surfaces, etc. To be more precise, an irreducible
that lie on a common fixed sphere for several given placementsd#ifiebraic set is one that cannot be expressed as the union of a
the body in space. Seven general positions determine 20 centgiite number of proper algebraic subsdisn algebraic set is the
point/sphere-point pairs, a result proven by Sufies in 1886 solution set of some system of polynomial equatipir ex-

[22]. Solutions computed by continuation were reported5h ample, a line is irreducible: it can be considered the union of an
and a reduction to a degree-20 polynomial in one variable giveniiffinite number of points or cut up into a finite number of pieces
[30]. These solutions can be useful for designing a seven-bar spg-inequalities, but neither of these violates its irreducibility. On
tial mechanism to guide a body through the specified precisigie other hand, the union of two lines or the union of a line and a
points. point distinct from the line are both reducible. The decomposition

We consider a variation of this problem in which only six placeof a solution set into its irreducible components is analogous to
ments are given. For general positions, these will determinett@ factorization of a polynomial in one variable: there are a finite
center-point curve and a corresponding sphere-point curve. Pregmber of solution points, although some may appear with mul-
erly speaking, lettingy e R® be the center point ande R® the tiplicity. A more complete analogy is given in Table 1.
corresponding sphere point, there is a single center-point/sphere©ne should note that irreducible components are determined in
point curve in &,y). Projecting this curve ontg only gives the complex space. The real part of a complex curve may have several
center-point curve in the fixed space, and projecting ongives  disjoint pieces. A familiar example is that a four-bar coupler curve
the sphere-point curve in the moving body. It is natural to wondefiay have two disjoint circuits, but both are part of the same
if the center-point/sphere-point curve is a single irreducible piee@mplex coupler curve; that is, both circuits are given by the same
and to determine its degree. sixth-degree coupler curve equation. The exceptions are when the

Fori=1,...,6, letp, e R® denote the position of the referencecoupler curve equation factors. For example, the coupler curve of
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a parallelogram linkage factors into a circle and a fourth-degrélee efficient computation of witness points and about the mono-
curve, and these two pieces are its irreducible components. dromy method of finding irreducible components.
A crucial fact used in our algorithms is that an algebraicset

di ionk in (M ts almost i b £ di 3.1 Embedding and Cascade. As described above, witness
IMENSIONK In L." Meets aimost every inear subspace ot dimelyq;ng are found by slicing the solution set with a sequence of
sionn—k in a nonzero, finite number of points, where the numb

f Doints | | o the dearekof th his is wh h Bndom linear spaces of successively higher dimension. These
of points is equal to the degrekof the set. This is where the use ., mtations can be done completely independently, but it is

of complex space is very useful, because a real algebraic curvgifich more efficient to combine all the slices into a common
real 3-space might not intersect a given plane, but when extenggfiylation, called thembeddingand proceed from one slice to
to their complex counterparts, the two will meet, albeit possibly ghe next via acascadeof homotopies that respect the embedding.
complex-valued points. Ldt,_, denote the set of all linear sub-Tnjs approach is fully presented [i14]. We give only a brief
spaces of dimension—k in C". Then, the members of this setoutline here.

that do not meeS in d isolated points are an algebraic subset of Throughout this description we use a subscripting convention
Ln—k. On the other hand, almost every linelin_, completely that indicates the size of matrices; for exam@g,, denotes a
misses any given algebraic set of dimension less thafgain, mxn matrix with complex entries. If eithem or n is less than 1,
the exceptions form an algebraic subset. Amnxn is empty. Matrixl ., is themXx m identity matrix. A bold-

In outline, our algorithn{13] computes the irreducible decom-face letter with a single subscript denotes a column vector.
position, using the facts just stated, as follows. Assuming that theSuppose we wish to study a system rof polynomials inn
given equations are not all identically zero, we start by looking forariables,f,,(x,). The number of polynomials and variables are
components of dimensiom— 1. We do so by intersecting the so-not necessarily equal. Lét=min(m,n), and introducek “slack
lution set with a randomly chosen link, With probability one, Vvariables,”z., andk homotopy cascade variablet,. We can
this line meets the components of dimensior1 in a finite embed all of the slicing operations for generating witness points at
number of isolated points, which we compute using continuatiofivery dimension into a single system of equations of the form
We call these pointsvitness pointsThe line misses all lower-
dimensional components entirely. We may now move the line (o Aoxm-iofm(Xn) F Bioaii
around and follow the solution points to collect samples on the EXn 2, t) = C(fj—k)Xan+D(n—k)><1 =0, (6)
solution set. There are several ways to use these samples to iden- Z+diag(ty) (EiocnXn + Fiexa)

tify which wrgness pomts belong to the same irreducible compgyhere matrice\x (m-k) » Bixk Cinkyxn+ Dn-kjx1: Ekxn and
nents. One is to fit a polynomial to the sample set and chegk ., are random with complex entries, and where diggis a
which other witness points satisfy (it 3]. Another alternative is kx k diagonal matrix witht, on the diagonal. Givety, this is a
the monodromy algorithrfil6], which attempts to connect pointssystem ofn+k equations in then+k variables &, ,z,). Ignoring

by a continuation path. A by-product of either technique is thihe termB,.z., the firstn equations of the embedding are the
discovery of the degree of each component, which equals tbeginal polynomials, either squared up Aq m_) if m>n, or
number of distinct witness points found on the component. Tiaticed down vieC , _yyxn @ndD ;1 if m<n. For the common
component is described by the collection consisting of the systarase ofm=n, A, C andD are nonexistent. Fan#n, the validity

of equations, the slicing ling, the degreed of the component, of replacingf,, by either the squared up or sliced down versions,
the d witness points that are the intersectionlofvith the com- as appropriate, is discussed[i¥%,18.

ponent. We call this a witness set for the component. This com-Recall that the witness points for dimensiprare obtained as
pletes the discovery and decomposition of solution sets of dimethe simultaneous solution of the polynomiglswith j additional

sion random linear equations, the slice. In the casen, we haven
n—1. —m slice equations built into the embedding. Let
We may now proceed to dimensior- 2, this time cutting with E(%n20=EXn 2z [1, ..., 1,0,....,0]), ©6)

a random planéa member oL ,). With probability one, this will
hit the (n—2)-dimensional components in a finite number of isowhere the initialj — (n—k) elements of, are nonzero. As can be
lated points and miss the lower-dimensional components. It doggen by direct substitution into E(6), any solution of&; with
however, intersect the higher-dimensional components. We us&a 0 is a solution of the original system wijhadditional linear
second continuation to get the isolated points, but we may also gguations; that is, it is one of the witness points we seek. An
some points on the higher-dimensional components. But thisatgorithm for generating all the witness points at every dimension
not a problem, since we can use the information already gleariédto first solve&,(x,,z) =0, which meang,=(1,...,1), and
in the previous round to detect these and cast them out. We théten follow solution paths in a cascade lofhomotopies, each
as before, collect the witness points into irreducible componeriking one more entry ity from one to zero. At each stage of the
to complete the work at dimension- 2. cascade, the witness points are those with 0 and the rest are
The algorithm moves down the dimensions sequentially, unffart points for the solution paths for the next stage. This embed-

finally, at dimension zero, we find the isolated solutions to tHéng of one slice within another saves considerable computation
system. compared to naively computing each slice independently.

The final output is a list of all irreducible components found at 3.2 Monodromy With Linear Traces.  With witness points
each dimension. For each of these, we have witness points. Thghand, the next step is to group them into the irreducible com-
number of witness points is equal to the degree of the irreducii@nents. Irreducible components are the pieces of the solution set
component, and they all lie on a common-k)-dimensional that remain connected even after singularities have been removed.
linear subspace. Starting at a witness point, we can, by contintgre essential fact is that if two irreducible componefiandY of
tion, move the linear slice to sample as many points as we liggmensioni meet at all, their intersection is of lower dimension:
from a component. The combination of the linear slice and thim(XNY)<i. Suppose we have witness points ¥oendY on a
witness points that lie on it form witness sefor the component. common linear slicel of dimensionn—i, but we don’t know

In the foregoing description of the method, we have skippaghich witness point is on which component. We can track the
over the issue of sets having multiplicity greater than one. Theggétness points in a continuation as we mdvén a general man-
are higher-dimensional analogues of multiple roots of a polyneer. A general motion of. has a zero probability of touching
mial in one variable. The interested reader is referrefil8 for XNY, because its dimensionality is too low. So the paths of the
details. witness points forX and those forY have a zero probability of

In the next few paragraphs, we give some more details abaubssing. Thenonodromymethod[16] simply moves the slic&
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Table 2 Execution summary for 7-bar mechanism (see text for explanation )

Witness Generate Witness Classify
dim X ns W 0 cpu 1 0 cpu
1 48 42 6 0 8.7s 6 0 42.2s
0 42 — 6 36 3.7s 0 6 0.3s
tot 90 42 12 36 12.4s 6 6 42.5s

around randomly generated loops and checks upon return to #gpiation is incorporated using a slack variable. As indicated in the
initial position whether any of the solution paths ends on a diffefirst line of Table 2, this homotopy requires tracking 48 solution
ent witness point than it started. If so, we know that the twpaths (column with headeix). After 8.7s, we find six witness
witness points are on the same irreducible component. After tragdeints and 42 “non-solutions,{column “ns” in Table 2. Non-

ing enough monodromy loops, one may hope to discover all pamlutions are distinguished from witness points by having a non-
sible connections and thereby know how the witness points gromero slack variable. The six witness points represent the sixth-
into components. degree coupler motion, which traces the path shown in ). 3

The shortcoming of a naive implementation of monodromy i$he coefficients of the coupler motion equation are found by sam-
that one never knows when to terminate. The connections between
witness points occur on loops that encircle branch points where
two or more witness points coincide or meet the same singulari’
Since we do not know at the outset how many irreducible cor
ponents there are, we do not know from monodromy alone wh
all connections have been found.

An answer to this problem is to use linear traf&g|. Given a
subset of witness points on a component, the trace test tells if Ie g
subset is complete. One version of the test is as follows: if w
move the slice parallel to itself by varying the constant of on
equation of the slicé.e., an element of;), the centroid of the
complete witness point set for a component must move on a lir
Moreover, since the orientation of the slices is general, linearity
the trace implies that the witness set is complete. Thus, by che:
ing the trace after every new monodromy connection is found, v
can determine which subgroupings of the witness points for
complete irreducible components and only track the incomple
sets in the succeeding monodromy loops. When all the subgrot
pass the trace test, the irreducible decomposition is complete. .
ternatively, one can check traces on subsets of the witness po
to find the irreducible decomposition without monodromy. Whe
the number of witness points is large, this is an intractable cor
binatoric problem, but after some initial groupings are found b (a)
monodromy, the combinatoric approach can be used to finish 1
task. For a small number of groupings, the combinatoric approa A
is preferable, since the cost of computing monodromy loops
large compared to the cost of a trace test. The question of decid
when to switch from monodromy to combinatorics is still open fo
study.

4 Solutions of the Examples

We now return to the sample problems described in 82 ai
discuss the results found by our algorithms. The timings report
in this paper are obtained from runs on an 800Mhz Pentium |
Linux machine.

4.1 A Mobile Seven-Bar Linkage. As described above, we
may construct a mobile seven-bar linkage using Roberts cognal
A particular example is as follows. First, choose

b0=0, b2:7011+04g, a2:0.46, a5:0.41,
co=1.2, a=0.6+0.8, p=ef, 7
Then, derive the remaining parameters as

az=as, y=by/a,, bs=asy, ay=coly, as=|by,

a;=|agtaga—asBlyl, as=|asB—bsa—cyl. (8)

The computations for this example begin with a test for a soli
tion curve. To obtain witness points on any motion curves th, (b)
might exist, we intersect the solution set with a random hyper-
plane. This means we add a random linear equation to the systeig) 3 Assemblies of a seven-bar linkage:  (a) a solution curve
and use the homotopy [114] to find all solution points. The extra of degree six and (b) one of six isolated solutions.
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pling and fitting, confirming in the process that no equation aolution (e,g is meaningful only if it can be rescaled @e=1.
lower than degree six fits the data. In this way, the algorithmherefore, we find that the Griffis-Duffy | platform has a single
confirms that the coupler motion is one irreducible component ofeducible motion curve of degree 28.

degree six. Note that by “coupler motion” we mean the curve On the face of it, this result seems to be at odds with the result
n(0i.¢A9i), i=1,...,6, satisfying Eqs(1,2,3, which must be dis- of Husty and Kargef2_9], who give a degree 20 polynomial that
tinguished from the “coupler curve,” meaning the path traced a2nishes on the motion curve. However, on closer inspection,
by the coupler point there is no contradiction: Husty and Karger first eliminate the

In the second stage of the algorithm, summarized in line two %f;smonal variablesg and work only withe. We find that the

Table 2, the 42 non-solutions from the first stage are used as s eg;/ee 28 curve in the full coordinatésg drops to only degree

points for a homotopy that will lead to the isolated roots. After
3.7s, we find that there are six potential witness po{otgdumn 4.4 Griffis-Duffy Il. ~ This special case of the Griffis-Duffy |
“W"), with the other 36 solutions diverging to roots at infinityplatform also has 12 lines corresponding to degenerate assem-
(column “«"). Using the coupler motion equation from the firstlies, but now the curve of degree 28 breaks up into lower-degree
stage, we confirm that none of the six finite points is on the coiffeducible components. It takes 27.6s for the monodromy algo-

pler motion, hence they are all true witness points. Each of thedm of [16] to group the 28 witness points into five sets: four of

is a rigid assembly of the links, one of which is shown in Figthe five have cardinality six, and one set has four points. Valida-

3(b). tion of these groups by linear traces takes an additional 4.3s.

The greatest cost in execution time on this problem was the 4(fsga||n, _purelyl for pl_JYIDOS{%ﬁ_ of comparison, ‘r’]"e ﬁlso comprtezln-

used to construct an interpolating polynomial for the coupler m&grPolating polynomials. This time it is much cheaper, only 2m
343, because the degree of the components is much Jower.

tion. To only confirm that the six witness points are on one irr In this case, the comparison of our results with thosi@8] are
ducible component, double precision floating-point arithmetic g% ! p

sufficient. However, to test the solutions at the next stage by t Oé?eesénﬂzgs:tywaencfjlnlga:g:r (;ggnop;(t)nff(e)ztrs c(())fm?)ign:eﬁg ’%fe’czzl}egree
method of 13}, we need an accurate interpolating polynomial. Fofg 4 4 4" Tiyo of the differences are resolved similarly as in the
this purpose, we used multi-precision arithmetic routines to Corfe ¢ .

) ) o . riffis-Duffy | case. That is, we find that two of the quartics
pute sample points to 40 decimal places, which is computationa] ported in29] are indeed fourth-degree & but they are degree

expensive. A more efficient approa¢hé] is used on the next jx in (e,g. However, Husty and Karger, working with symbolic
example problem, but we report here the earlier approach.  computation guided by hand, did not report one of the sextic
The isolated solutions have a simple physical interpretatiofomponents. This shows the value of a general algorithm and
Regard the linkage as two four-bareBFEG and CDIHG, demonstrates the effectiveness of our numerical approach.
joined at a common coupler poi. If we disconnect these link- . . .
ages at the coupler point, both sweep out the same coupler curvgh-5 ~Center-Point/ Sphere-Point Curves. Briefly — stated,
The isolated solutions come where the coupler curve seffliCing with arandom hyperplane, our approach finds 20 witness
intersects, that is, at its double points. Observe that in Fig, 3 POINtS on the center-point/sphere-point curve, which agrees with
four-bar ABFEG is positioned to move horizontally along thethe degree calculated via the two-homogeneous Bezout number.
coupler curve whereas four-b&DIHG is ready to move along Usér;]%épesg]\?vgoﬂgy)éoﬂgﬂggTﬁa‘f’?hgngem:: ;ginzt/(;;ﬁélﬁgopn;m
the near vertical portion of the curve. Since these m.Ot'onS.aigrve is an irreducible curve of degree 20. Slicing with a hyper-
incompatible, the assembled structure is immobile in this config

; . Tane involving onl iv n witn ints, th howing th
ration. We may reverse the roles to get a second isolated solu gne involving oniyx gives ten witness points, thus showing that

. . fia sphere-point curve is degree 10, and similarly, slicing with a
at this same double point of the coupler curve. A general four-bgs ar equation in only, we find that the center-point curve is

coupler curve has three double points, and since this class gpf, degree 10. These results confirm that the upper bounds on
moveable seven-bar structures will have two isolated solutiofjsese degrees predicted from the bi-linearity of E§sare exact.

associated to each double point, there will be in general six is@ne should always keep in mind that calculations of total degree,
lated solutions. In the example worked here, only one doubjgyitihomogeneous degree, and the like, are merely upper bounds
point is real, hence two of the six isolated solutions are real. on the actual degree of the variety. Our method provides a conve-

4.2 CGriffis-Duffy Platforms. We begin the analysis of the nigrn;_way to (1Iet$|rmi[net the ac;]tual degree.th t ; i
Griffis-Duffy platforms by searching for solution curves. Startinq(iner;]saﬁ)ég_m; Srlojltjeitrigr??)?;n i\rllg(j)en;)?er\]ic():nvaﬁetc;/ccc)lrj]{f) ;e(sqlljt?snety (')?
with 128 pathd(the total degree of Eqed), the intersection of the the variables can have a lower degree than the variety itself. We

curves with a random.plane gives forty witness points. Comp“‘aa not need to eliminate variables to answer questions about the
tion of the witness points takes about one minute.

In this example, it is highly desirable to avoid the interpolatio%roje-cnom we wc_)rk numerlcally with all the_ va_nables, taking
' e .- “'special slices to find the properties of the projection.

step that was so expensive in the seven-bar example. This is be-

cause the number of monomials to compute grows exponentially .

as the dimension and the degree increase. Also, high degree paly- Conclusions

nomials are numerically difficult, so expensive multi-precision From the experience of the last decade, polynomial continua-

arithmetic is needed. Instead of interpolation, we can apply ttien has been known to be a reliable and convenient way to find

monodromy algorithm of16] to detect irreducible components,solutions to problems in kinematics. However, until recently, these

hen projected onto the rotational component

using linear traces to validate the groupi@3]. methods were limited to finding isolated roots, which limited the
- . __kinds of problems that could be addressed. Of particular difficulty
4.3  Griffis-Duffy . In this case, the monodromy algorithmgye gyerconstrained mechanisms, which have more degrees of

of [16] predicts that the 40 witness points break into 12 lines ajghedom of movement than expected from the usual mobility cal-
an irreducible curve of degree 28. Monodromy predicts this iyjation. These may have a mixture of isolated solutiagid
33.4s and linear traces validate the groupings in 4Bst com-  assembligsand motion curves of various dimensions. Also, it can
parison, we also ran the interpolation algorithm and found thathtappen that the motion at one dimension is composed of more
requires 1h 19m to compute an interpolant of degre¢ ZBe than one irreducible piece.

twelve lines all satisfy the equatiaie=0, which means thatthey ~We have developed software, well documented in the applied
do not give physically meaningful configurations. This is becauseath literature, for solving these more difficult problems. This
e is a quaternion representing the rotation of the endplate, angb@per reports on the application of the new methods to several

Journal of Mechanical Design MARCH 2004, Vol. 126 / 267



problems in kinematics: an overconstrained planar mechanisi#0 Wampler, C. W., Morgan, A. P., and Sommese, A. J., 1992, “Complete Solu-
Griffis-Duffy examples of movable Stewart-Gough platform tion of the Nine-point Path Synthesis Problem for Four-bar Linkages,” ASME
X . . . J. Mech. Des.114, pp. 153-159.

sFr_uctures, and center-pomt/sphe_re-pomt Curves_for six spatial PPr1] Morgan, A. P., Sommese, A. J., and Watson, L. T., 1989, “Finding All Isolated

sitions. In each case, our numerical methods give a complete ir-  Solutions to Polynomial Systems Using HOMPACK,” ACM Trans. Math.

reducible decomposition of the solution set. For the planar seven- Softw., 15, pp. 93-122. _

bar, the results are consistent with known theory: two Robert@z] Verschelde, J., 1999, “Algorithm 795: PHCpack: A General-purpose Solver
! te f b h d . | d the th for Polynomial Systems by Homotopy Continuation,” ACM Trans. Math.

cognate (_)ur' ars share a degree-six COL_Ip er CUer_ an € ) ree Softw., 25(2), pp. 251-276. Software available at http://www.math.uic.edu/

double points of the coupler curve each give two rigid assemblies ~jan.

of the seven-bar. Calculations for the center-point/sphere-poift3] Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, “Numerical De-
v | ree with prior theorv. However. for th riffis-D composition of the Solution Sets of Polynomial Systems into Irreducible Com-

curve also agree wit p or theory. . O, eve . orthe G . S Uffy ponents,” SIAM (Soc. Ind. Appl. Math. J. Numer. Anal.,38(6), pp. 2022—

platforms, we get a bit of a surprise: we find some differences 53,44

from the results published by Husty and Karger. Of these, differri4] Ssommese, A. J., and Verschelde, J., 2000, “Numerical Homotopies to Com-

ences in the degrees of components were not true contradictions, pute Generic Points on Positive Dimensional Algebraic Sets,” Journal of Com-

but are due to the use by Husty and Karger of a projection ontg _ Plexity, 163, pp. 572-602.

. . . 15] Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, “Numerical Irre-
rc_)t,atlonal cooro_llnates Whereas we work the prObler_n _'n both po- ducible Decomposition Using Projections from Points on the Components,” in
sition and rotation coordinates. However, for the Griffis-Duffy Il E. L. Green, S. Hosten, R. C. Laubenbacher, and V. Powers Sgtchbolic
platform, our algorithm finds a sixth-degree component that they —Computation: Solving Equations in Algebra, Geometry, and Enginegvioig
did not report. This shows the usefulness of the numerical ap: 286 of Contemporary Mathematicpp. 37-51. Amer. Math. Soc.

. 6] Sommese, A. J., Verschelde, J., and Wampler, C. W., 2001, “Using Mono-
proach to find new results or check results found by other means. dromy to Decompose Solution Sets of Polynomial Systems into Irreducible

Components,” C. Ciliberto, F. Hirzebruch, R. Miranda, and M. Teicher, eds,
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